
ELE 448 Lab 7 Due by 01 April, 2020

Introduction:

A half adder is defined as an adder that takes two inputs, A and B, and produces two outputs, Sum and Carry. A full adder differs by the fact that it has three inputs, A, B, and C_{i} . If a multi-bit adder is desired, it will require a cascade of full adders; however, the operation on the LSBs can be completed with a half adder. The outputs of a full adder can be constructed from the following logic:

$$S = (A \oplus B) \oplus C_{\iota}$$
$$C_{out} = (A \cdot B) + (C_{\iota} \cdot (A \oplus B))$$

These logic equations can be implemented by using 2 XORs, a XNOR, and a 2-input multiplexer. The multiplexer works by selecting input A when V_s is high and input B when V_{NS} is high. A 1-bit full adder implemented with these components can be seen below:

Assignments:

- 1. 1-Bit Full Adder
 - a. Create a schematic
 - b. Create a symbol
 - c. Test the performance
 - i. Create a truth table covering all possible input combinations that matches the simulation results

Questions

- What are the logic equations for the outputs of a half adder?
- What signal could replace Vb as the input V_In_A of the multiplexer?

2. 4-Bit Adder

- a. Create a schematic
 - i. The carry in pin of the first adder can be connected to ground
 - ii. The summation output of each adder will represent one bit of the output signal
 - iii. The carry out pin for the first three adders will connect to the carry in pin of its adjacent neighbor
 - iv. The carry out pin of the last adder will represent the overflow bit of the output
- b. Create a symbol
- c. Test the performance
 - i. Try different combinations of the 4-bit inputs Va and Vb
 - 1. Show that these combinations produced the corrected outputs by performing the calculations manually